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SUMMARY 

The classical problem of elasto-hydrodynamic lubrication of cylinders in line contact is formulated as a 
non-linear complementarity problem. A direct algorithm is applied to the approximation obtained by 
finite differences. Implementation considerations are emphasized. The new method provides reliable 
and automatic location of the previously troublesome lubricant free boundary. Numerical results reveal 
the qualitative behaviour of the pressure distribution and the lubricant film thickness under variation of 
key physical parameters. 
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1. INTRODUCTION 

The elasto-hydrodynamic lubrication of cylinders in line contact has received much attention 
recently in the mechanical engineering literature. Among theoreticians, two main routes of 
study are distinguished. Following Grubin,' many studies made simplifying assumptions 
about the mathematical model to obtain approximate or partial solutions which may be valid 
over some restricted domain of interest. Paralleling this work have been attempts to solve 
the general mathematical model numerically to calculate the pressure distribution in the 
lubricant and simultaneously the lubricant film thickness. Computer solutions, requiring 
fewer simplifying assumptions, are more widely applicable. However, there are subtle 
complicating features present in the mathematical model which have caused computational 
difficulties to earlier computer approaches. The purpose of this paper is to present a 
numerical algorithm which is easy to implement and which overcomes these difficulties. 

Dowson and Higginsonl,' approached the computer solution of the EHL model with an 
inverse iterative technique, after they found straightforward (fixed-point) interation tedious 
and slowly converging, even for a constant viscosity lubricant. However, they supplied no 
convergence proof and in some extreme cases the convergence of inverse iteration is 
doubtful. Stephenson and Osterle3 obtained solutions for lightly loaded cases using finite 
differences and an inside-outside iteration coupled with bisection to find the outlet point. 
Attempts to prove the convergence of their scheme were unsuccessful because of the high 
degree of non-linearity of the equations and the fact that the outlet point varies from 
iteration to iteration. Cheng and Sternlicht? treating the heavily loaded case, sought 
solutions having a sharp pressure peak at a prescribed value and adjusted the speed (for 
given load and material properties) to match. This approach overlooked the possibility that 
for some load and material properties there would be no such speed, 

Herrebrugh' reported that an integral equation approach was successful for the case of 
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constant viscosity. The usefulness of this integral equation approach for the non-constant 
viscosity case has not been explored. 

Some of the most recent computational work has concerned the application of finite 
element techniques. Taylor and O’Callaghan6 employed a Galerkin approach with 
isoparametric elements. Rohde and Oh’ applied higher order elements (cubic splines, cubic 
Hermite polynomials) along with Newton-Raphson iteration to solve lightly and moderately 
loaded cases. However, some oscillation difficulties were noted by Rohde and Oh in the 
heavily loaded cases using the piecewise cubic Hermite functions. 

These two teams of researchers also commented on the location of the free boundary 
(outlet point) and proposed heuristics to locate the free boundary. Taylor and O’Callaghan’ 
applied their techniques to some ‘soft’ elasto-hydrodynamic lubrication problems (elastic 
cylinder rolling on a rigid half-plane) treated by Swales, Dowson and Latham.’ Taylor and 
O’Callaghan reported some difficulties in locating the free boundary. In particular, extreme 
case was required in the positioning of the outlet point to avoid solution oscillation and/or 
divergence. 

This brief historical survey indicates a need for a systematic approach to solution-one 
which can be readily automated, can be proved mathematically to converge and which 
includes the automatic location of the free boundary. 

In the related areas of hydrodynamic lubrication of journal bearings’&’’ and stress 
analysis of gear systems,13 computational techniques borrowed from the area of quadratic 
programming have proved very useful. In these linear problems, solutions and free boundary 
locations are computed either with ‘complementary pivot’ algorithms, which use pivot 
operations similar to the simplex method of linear programming or with a variant of the 
relaxation method for linear systems of equations. In this paper, the direct algorithm of 
Habetler and Kostreval4 will be applied to the non-linear integro-differential problem at 
hand. 

The relaxation method of Christopherson,” first derived for the hydrodynamic lubrication 
problem, is sometimes proposed for use in the elasto-hydrodynamic lubrication problem. 
However, the criterion for convergence of the method12 (symmetric, positive definite 
Jacobian matrix with non-positive off-diagonal elements), does not apply here, even to a 
linearized version of the problem. Thus a method which converges on a larger class of 
problems is of interest. To demonstrate its computational feasibility, the method of Refer- 
ence 14 has been implemented in a FORTMN program and over a hundred cases have 
been solved. These cases range over a variety of operating conditions including lubricants of 
constant and variable viscosity, under lightly, moderately, and heavily loaded conditions. No 
difficulties have been experienced with respect to the location of the free boundary using the 
Habetler-Kostreva direct algorithm. Examples demonstrating the capabilities of the method 
will be included in a later section. 

The direct complementarity approach presented in this paper offers many advantages to 
the computational lubrication engineer. Since it locates the free boundary or outlet point 
automatically, the user need not be burdened by time consuming trial-and-error guesswork. 
A modest computer program implements the algorithm, requiring only readily available 
software. Among the many computer approaches to EHL developed to date, the direct 
complementarity algorithm is the only one which has been proved mathematically to 
converge to a solution in a finite number of steps. 

The paper is organized as follows. The formulation of the mathematical model is covered 
in Section 2. Following this is a section describing a new formulation as a complementarity 
problem and the mathematics needed to solve it. Some important algorithmic implementa- 
tion considerations are followed by a section on numerical results. 
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2. MODEL FORMULATION 

The mathematical model we study is not much different from those treated earlier by other 
 author^.'-^,^.^ However, for clarity and completeness we note the simplifications and assump- 
tions inherent in our model. 

We consider the case of pure rolling (no sliding) under isothermal conditions. Only steady 
state solutions will be considered. The lubricant between the two elastic cylinders in line 
contact will be considered incompressible. It will be assumed that lubricant viscosity reaches 
its equilibrium value instantaneously according to the pressure dependent law p = pOeap, 
where E*. is viscosity, p is pressure and a and w0 are lubricant dependent parameters. The 
elastic deformation of the cylinders will be assumed to take place instantaneously with small 
enough magnitude to be described by linear elasticity theory. 

Lubricant pressure will be assumed constant along the direction parallel to the axes of the 
cylinders as well as across the lubricant film gap. Side leakage will be neglected. As usual, the 
two cylinders of the physical model are analysed as a single equivalent cylinder rolling along 
a plane. 

Any load applied externally will be balanced by the pressure generated in the lubricant 
film. Lubricant film thickness will be assumed positive over the entire domain of interest. 

Between the inlet point denoted by x, and the outlet point xb(xb>x.&), the Reynolds’ 
equation quantifies the relationship between pressure, film thickness and viscosity. The inlet 
point x, will be taken as known, whereas the outlet point (free boundary) xb will be 
determined as part of the solution. 

The Reynolds’ equation, the equation of linear elasticity, the pressure viscosity equation 
and the load constraint are non-dimensionalized (see appendix for notation) by x = %/a, 
h = 6/8 and p = p/pm,, relative to the Hertzian, dry solution. We also introduce the aggregate 
variable k which is the dimensionless equivalent of the sum of the terms (h,+constant) in 
the formulation of Dowson and Higginson (Reference 1, p. 66). This leads to the following 
free boundary problem for the pressure distribution p(x) and the film thickness h(x) .  

Given the parameters (Y and A (see appendix for definitions) and an inlet point x,, find 
p(x), h(x) ,  the free boundary xb and the aggregate variable k satisfying: 

2 xb 

h(x) = x2+ k -- p ( s )  In /x  - s/  ds in [x,, m) 1. 
with the boundary conditions 

Let us take note here of a few characteristics of the model which distinguish it from some 
related models in lubrication theory. Observe that the formulation contains non-local 
coefficients because h ( x )  is an integral function of p ( x ) .  Non-local coefficients preclude the 
use of so called ‘shooting methods’ useful in many iterative boundary-value problem 
approaches. Another effect of the non-local coefficients is that the Jacobian matrices 
necessary in any discretization are not banded. Increased computational complexity of the 
non-linear equation solving is a direct result of the non-local coefficients. 
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The kernel in the integral equation which gives h ( x )  is mildly singular. As long as the 
Cauchy Principal Value of the integral converges, no difficulties arise with the formulation. 
However, the singularity may be removed using integration by parts: 

2 xb 

h ( x ) = x 2 + ( k + l ) + -  (s-x)InIs-xl I. 
This form is recommended for computational purposes. 

In order that the computed solutions be physically meaningful, we seek only solutions p ( x )  
which satisfy p ( x )  2 0  on [x,, xb] and p ( x )  = 0 on [xb, w). An approach which enables one to 
obtain such solutions is complementarity theory. The next section introduces complementar- 
ity and reviews the relevant theoretical considerations. A non-linear complementarity 
problem corresponding to  the mathematical model (1)-(4) is then presented and solved with 
a numerical algorithm. 

3 .  COMPLEMENTARITY 

Motivating the complementarity theory applicable to the solution of the elasto- 
hydrodynamic lubrication problem is the following constrained free boundary problem, 
corresponding to  the model (1)-(4) above. 

Given xa, the inlet point, let xF denote some point far down stream, so that xF > xb > x,. 
Then if a and h are given, find p(x) and h ( x ) ,  xb and k satisfying: 

= O  in [x,, xb] 

2 *b 

S(p, h, k )  = h ( x )  - x2- k +- p(s) In Ix - sI ds = 0 in [x,, XF] I. 
subject to: 

together with the boundary conditions 

p(xa) = 0 and p(xb) = 0 = p’(xb)  

The non-negativity conditions of the above problem are well motivated. That p ( x )  should 
be a non-negative function is usually accepted. However, the interpretation of a non- 
negative Reynolds’ operator R (p, h, k )  has not been given. Geometrically, this means that in 

the interval [x,, XF], downstream of the cavitation point, the surfaces are diverging A*20 
( d x  ) 

and film thickness is an increasing function. This occurs because in [Xb, XF] the function p ( x )  

is identically zero, which means that R ( p ,  h, k )  consists of only one term 
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positive coefficient A. Surfaces which are not diverging in the outlet region [x,,, XF] are not 
physically meaningful. 

The area of mathematical programming known as complementarity theory is a relatively 
new one and one which has received much study in recent years. A survey paper by Lemke'' 
outlines the early theoretical results, most of which were motivated by applications to 
equilibrium type problems in optimization and game theory. More recent results, relevant to  
the elasto-hydrodynamic lubrication problem, are contained in the paper of Habetler and 
K o s t r e ~ a ' ~  and the references therein. 

Proceeding now to the Complementarity theory applicable to solution of the above free 
boundary problem of elasto-hydrodynamic lubrication we begin with some definitions. Since 
the free boundary problem requires functions p ( x )  and h(x) for its solution, the first 
complementarity problem considered will be in a function space. 

Let B be a reflexive, real Banach space with dual space B". Let the value of u E B" at 
u E B be denoted by (u, u). Let C be a closed convex cone in B with vertex at 0 and polar 
cone C" = { u  EB" l (u ,  u ) 2 0  for each UE C}. Let A : D c B  -+B* be an operator. Then the 
complementarity problem associated with A and C is: 

Find u E C so that A(u) E C" and (u, A(v)) = 0. 
Suppose HA[x,, XF] represents the set of functions which have a generalized derivative in 

Lz[xa, XF] on the interval [x,, XF] and vanish identically elsewhere. The cone of non-negative 
functions within Hk[x,, xF] will be denoted Pi[x,, XF], where f 2 0  means f€H;[x,, XF] and 
f(x) 2 0 almost everywhere in [x,, XF]. Making the correspondences yields: 

B = HA[xa, XF] x HA[xa, xF] x R1 
c = Pk[xa, XF] x H;[xa, XF] x R 1  

c" = (PA[xa, xF])* x (0) x (0) 

R(P,  h, k )  
A = S ( p ,  h, k )  and u =  h(-) [ T(p, h, k ]  [:)I 

Use of the function space Hh[x,, XF] corresponds to  solutions of equations known as weak 
solutions. That is, if A :ff;[x,, xF] -+ H-' then the equation A (u) = f is to be interpreted as 
(y, A(U) -f> = 0 for a11 y E Ht[x,, xFl. 

The linear complementarity problem for hydrodynamic lubrication of a journal bearing 
was studied in a function space similar to  that above by Cryer and Dempster.16 Bazaraa, 
Goode and Nashed17 posed the non-linear complementarity problem in a Banach space, but 
cited applications only in finite dimensions. The case treated in this paper is the first 
physically motivated example of an instance of the non-linear complementarity problem 
which is infinite dimensional. 

The generalized derivatives used in the above also allow for 'spikiness' and mild sing- 
ularities in the functions p(x), h(x) and their derivatives. Features such as these have been 
observed in some numerical solutions and measured experimentally, and they are physically 
justifiable. 

The infinite dimensional non-linear complementarity problem rarely yields to exact solutions. 
Hence, it is mainly of theoretical and modelling interest. For our computations we have 
discretized the problem to obtain a finite dimensional approximation by means of finite 
differences as follows. 

Let x F = x a + N A x .  Then for i = 1 , 2 ,  . . .  N, let pi=p(x,+iAx) and for j=i& let hi= 
h(x,+ j Ax). For convenience, take po = k.  
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A more compactly written form of the operator A is obtained by making a direct 
substitution of the h values into the equation for R. This yields, for i = 1,2, . . . , N, 

Let 

so that Ro and k form a complementary pair of variables. 
Values of p at half points are approximated by averaging: 

pi++ = +(pi + Pi+d + O((Ax)') 
pi-+ = $(pi + pi-1) +  AX)^) 

Numerical integration (by parts) to evaluate h(x) takes the form: 

2 N  
hi =[x,+j Ax12+(po+ 1)+- 1 wi((i - j) Ax) In I(i - j) Axlpf Ax 

T i=o  

where 

- Pi-tl-Pi-1 and pi -- for 2 s i ~ N - I .  PI-0 P2-0 I -O-PN-l 
Pi== ,  PN--zi- 2 Ax 

p;=- 
2 A x '  

The weights w, of the trapezoid rule were used above in each case. For definiteness, the 
numerical integrations simply ignore the free boundary xb, proceeding (as indicated by the 
above summations) across the entire [x,, xF] interval. Once the free boundary has been 
located correctly, the summations approximate the integrals of the model. 

Combining all these relationships yields the following N+ 1 dimensional complementarity 
problem: Find 

such that 

satisfying 

P=(PO,PI ,PZ , .  . . , P ~ ~ ) ~ E R X K = C  

R ( p )  = (Ro, R1,  R2,. . . , RN)T E{O}X RT = C" 

N 

(P, R(P))  = C PiRi(p) = 0 
i  =O 

The non-negative orthant of N-dimensional Euclidean space RY = {x E R N  I 3 0, 
i = 1,2, . . . , N} is the cone most often employed in computational studies in complementar- 
ity. The case of an arbitrary orthant in RN is covered by the theory and algorithm of 
Habetler and Kostreva,I4 but the present case is slightly more general. Since such side 
constraints as the load constraint, (3) ,  are not uncommon, we now show how to treat this 
important case. 

First, some terminology will be introduced. A more detailed presentation of the theory is 
contained in Reference 14 and the references therein. The concepts of P-matrices and 
P-functions, which are generalizations of positive definite matrices, are useful here. An n x n 
matrix is said to be a P-matrix if all its principal minors are positive. A non-linear function 
f : R" .+ R" is a P-function on a set S if for all a, b E S with a# b, there exists an index 
i = i(a, b) such that (ai -b,)(f ,(a)-f i(b))>O. For each subset I(k), k = 1 ,2 , .  . . ,2" of the set 
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N = { 1,2, . . . , n }  the principal subfunction y k )  is given by 

I f  f is a P-function on R" such that for each k = 1,2, .  . . ,2", thc principal subfunction f k )  
maps R" onto R", we say f is a non-degenerate P-function o n  R". 

Theorem 

Let Z s { l ,  . . . ,  n }  and 1'={1, .... n } - I .  Suppose f : R " - + R "  is a non-degenerate P- 
function on  S,  = { x  E R" 1 A ( x )  = O, i E I}. Then the dircct algorithm will be successful when 
applied to the complementarity problem 

, iE1  I f i ( x )  = 0 

xi unrestricted 

and 
X & ( X )  = 0 i c Z U 1 '  

Proof. The algorithm will successfully solve the complementarity problem o n  an orthant 
whcn the function is a non-degenerate P-function. Since f is a non-degenerate P-function on 
S , ,  we may apply this result to the subproblem on Z'. Since P-functions are closed under 
principal pivot operations and every principal subfunction of a P-function is a P-function, the 
algorithm is well defined and will be successful o n  this reduced problem, so long as we 
remain in S, .  This is easily accomplished by requiring all complementary points encountered 

0 
Whether a function f is a non-degenerate P-function on a set or not is somewhat difficult 

t o  ascertain. For the case o f  elasto-hydrodynamic lubrication of rollcrs, certain valucs o f  the 
parameters cy and A fail to yield non-degenerate P-functions. This fact was discovered by 
performing eigenvalue analyses of thc Jacobian matrix JR near solution points. When JR has 
a negativc real eigenvalue, R cannot be a P-function. I t  is conjecturcd that for sonie subset 
of thc range of pcrmissible values for a and A, R is a non-dcgeneratc P-function. Further 
analyses o f  this kind are now being performed and will be reported elscwherc. It  should be 
noted that, evcn in the cases where R is not a P-function, the algorithm has always 
performed well, successfully computing solutions to the complementarity problem. 

The algorithm itself is simple t o  describe and intuitively appealing. First, to fix ideas, make 
the  association between the region R z [ x a ,  xF] where Reynolds' equation is satisfied and an 
index set I which is a subset of { 1,2, . . . , N }  using x = (x,+ i Ax) E R iff i E I .  The solution 
will be obtained by considering a non-repeating sequcnce of trial regions until the correct 
rcgion s1" = [x,, xb]  is found. Through the above association, a sequence of trial 
index sets will be considered until the correct o n e  is found. 

One begins by choosing an initial trial index set Z")). Next the associated set of equations 
are solvcd approximately: 

by the algorithm to satisfy f,(x) = 0, i E 1. 

Ri (p) = 0 ,  for i E (0) U Z"') 
pa = 0, otherwise. ( 5 )  

This yields the intermediate solution p(('). Next p'" is evaluated to see if it satisfies the 
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(k) Evaluate solution p 

in constraints. 

- 

non-negativity constraints. If it does, we are done. If not, we must modify the trial region 
according to some systematic rule. Considered as a set, the non-negativity constraints pi 3 0 ,  
Ri(p)>O are placed in some natural numbering order. Sighting down this list find the index 
of the first constraint violated by the current intermediate solution. If for this index, say ik, 

(k) Evaluate solution p 

in constraints. 

p,,  <0, form a new index set by 
j ( k + l )  = ( k )  I - I i k )  

If R,* (p) < 0, then form a new index set according to 

p + ) = p) u { ik }. 

I 

Choose initial index set 1 L 

Successful completion. 

Complementary solution = p . (k) 

Solve equations: 

Ri(p) = 0, i c  I 

I 1 

index set I new I 

Figure 1. Flow c h a - 3  direct algorithm for the complcmentarity problcm 
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Using the corresponding trial region, now solve the equations Ri = 0, i E (0) U I"' and pi = 0 
otherwise. The new intermediate solution is then evaluated against the constraints. If 
necessary, the index set (trial region) is modified as before. Continue iteratively until no 
violated constraint can be found. An inductive proofI4 demonstrates that the algorithm 
terminates in a finite number of steps (index sets or trial regions) without ever retracing a 
step. 

The number of steps required by the algorithm is a function of how well the initial trial 
region approximates the correct region. Using the procedures outlined in the next section 
seems to keep the number of trial regions low, usually less than 10. A flow diagram of the 
algorithm is given in Figure 1. 

4. IMPLEMENTATION CONSIDERATIONS 

This paper demonstrates the applicability of the direct algorithms of non-linear complemen- 
tarity theory to large scale, practical engineering problems. Many of the implementation 
issues addressed here are general in nature and are useful for complementarity algorithms in 
other contexts, while some of the details relate specifically to  elasto-hydrodynamic lubrica- 
tion. 

In any problem containing mildly singular functions a certain amount of care is necessary 
to prevent function evaluations too close to singularities. The computational molecule used 
here, which always maintains at least (Ax/2) distance from the logarithmic singularity seems 
to be sufficient for practical values of Ax. The order of approximation, due to  the avergaging 
and centred differences, is seen to  be AVE AX)^). 

Because the decision rules of the direct algorithm are based on sign configurations of the 
independent and dependent variables, a numerical filter was implemented. In this filter, any 
value less than $(Ax)' in absolute value in the complementary point is replaced by zero. Such 
a filter tends to eliminate index set changes which might be triggered by round-off and/or 
truncation errors in the numerical solutions. The value $ was found experimentally. 

Direct algorithms for the complementarity problem require the use of a non-linear 
equation solver, a subroutine which can reliably solve systems of n non-linear equations in n 
unknowns. Most of the time these solutions are intermediate points which need not be 
extremely accurate, but should furnish correct sign configurations. A non-linear equation 
solver which has proven to be quite adaptable for the current use is that given by P ~ w e l l . ' ~ . ' ~  
The algorithm features a larger sphere of convergence than does the Newton-Raphson 
iterative method. Powell's 'Hybrid', as it has come to be known, is also readily available 
through many software libraries. Four codes which use variations of Powell's original idea 
are COSNAF (The Numerical Algorithm Group (USA) Inc., Downers Grove, IL, U.S.A.), 
HYBRD (Applied Math Division, Argonne National Lab., Argonne, IL, U.S.A.), NSOlAD 
(Computer Science and Systems Division, A.E.R.E. Hanvell, Oxfordshire, U.K.) and ZONE 
(Bell Laboritories, Murray Hill, NJ, U.S.A.). The wide availability of robust non-linear 
equation solvers such as these makes the direct algorithm approach practical and relatively 
simple to  implement. The particular version we have used to date is NSOlAD. Parameter 
settings used to obtain results will be given along with the results. 

Scaling the equations to be solved is a special concern in Powell's Hybrid. During the 
calculation, the function values should be approximately the same order of magntiude. 
However, in our EHL model, the form of the difference equations tends to  make this diffcult 
t o  achieve with fixed scaling factors. Therefore, a dynamic scaling of the equations was used. 
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Whenever the Ri(po, p,, . . . , pN) = 0 was to be solved it was replaced by the equivalent 
scaled equation exp (sc . pi) . Ri(po, . . . , pN) = 0. The scale factor sc is defined by 

a(0.0625a-0.125), if a a 2  
sC={ , if a < 2  

and was found through experimentation. Scaling by an exponential factor does not change 
the solution set of the system of equations but does make it more easily computable with 
Powell's Hybrid. 

Choosing a start point for a non-linear equation solver is always a difficult matter. In the 
complementarity problem the choice of an initial index set provides additional complication, 
as does the choice of a start point for intermediate systems. In our approach. we handle 
intermediate systems by feeding solutions forward: the final solution corresponding to index 
set I(" is used as a start point for index set I('+'). The initial start point and initial index set 
are handled in one of two ways. If a previous solution is available with a and A parameters 
not too distant from the desired values, it may be used as a start point together with the 
index set (region) it implies. If no such solution is available, a modified Hertzian solution will 
serve as a start point and initial index set. Such a function can be generated by the formula { 1;06 + 0*02x, x c - 1  

PHeru = J ( 1 -  x 2 ) ,  -l=GXCl 

x > l  

where the linear 'ramp' corresponds to x ,  = -3. Taking the index set corresponding to the 
positive pHem values seems to work quite satisfactorily whenever the formula is applied. 

Sometimes it is desired to solve the model for an (a, A )  pair which is not near any 
previously solved case and for which the modified Hertzian solution is inadequate. Then a 
simple continuation procedure can be useful. 

Starting from a previous run (a", A') one solves a sequence of problems (a', A')Zo such 
that (aM, A M )  is the desired (a, A)  pair. One feeds forward the solution and index set from 
each succeeding problem. Setting the (ai, A i l  along a straight line seems to  work reasonably 
well. A progression from lower to higher values in the parameters seems to  permit the 
continuation to  proceed more easily than from higher to lower. This can be understood by 
inspecting the meaning of (a. A )  and interpreting the continuation physically. The fact that 
absolutely no derivative information has been required in this continuation process may be 
attributed to the robustness of Powell's Hybrid algorithm and the ability of the direct 
algorithm to locate free boundaries through complementarity. 

5 .  COMPUTATIONAL RESULTS 

Two categories of numerical results comprise this section. First, some cases which have been 
solved by other techniques in the literature will be examined to demonstrate the validity of 
the complementarity approach.* Following this, a more realistic demonstration will be 
presented where the algorithm is applied to  actual bearing data, in which the loads and 
running speeds are varied. 

* In these cases, the axes were rescaled to be consistent with the solutions in the literature. 
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In all the computations performed, the non-linear equations were solved by using the 
HARWELL subrouting NS01 AD with the following input parameter settings: 

STEP= 1.D- 10 
STPMAX = 1.D5 

ACC= 1.D-8 
MAXFUN = 2000 

STEP is a parameter which is used to form forward difference approximations to derivatives 
in NSOlAD. STPMAX is a generous estimate of the distance between the initial point and 
the required solution of the equations. The parameter ACC is the accuracy required. A 
normal return of NSOlAD is made when Lf,(x)fSACC, corresponding to  the system of 
equations f , ( x )  = 0. i = 1,. . . , n. The maximum number of calls to a function evaluation 
routine (user supplied) is denoted by MAXFUN. 

Although the number of difference equations varies from case to case, the grid size was 
fixed at Ax = 0-05. All the calculations were performed in double precision on an IBM 370 
model 3033 computer. 

In 1962, Stephenson and Osterle' obtained the solution for a = 1.838 and A = 1.642. 
Later Taylor and O'Callaghan" and Rohde and Oh' obtained matching solutions using finite 
elements rather than finite differences for discretization. Figure 2 shows the solution 
obtained with the method of this paper. It is not distinguishable from the earlier solutions. 

RLPHA -0.1838D+01 LflMBDA-O.l642D+O1 

X 
Figure 2 



388 M. M. KOSTREVA 

Next we examine two solutions which were presented by Rohde and Oh. These cases have 
somewhat higher a values corresponding to higher loads. In Figure 3, what Rohde and Oh 
call a ‘medium load’ case (a = 3.468 and A = 1.065) is shown. Some discrepancies appear. In 
particular, note the location of the free boundary and the location and shape of the ‘pressure 
spike’. To evaluate their solution, its graph (see Reference 7, p. 325) was digitized and the 
result was input as a starting point for the direct complementarity algorithm. Convergence 
was to the same solution (Figure 3) which was originally computed from a Hertzian starting 
point. Thus we conclude that, in this case, x b >  1.0, which disagrees with their solution graph. 

dh  
dx The solution they present mislocates the free boundary, and hence violates - > 0 in [xb, x,], 

which is a meaningful geometric constraint corresponding to diverging cylinders. 
Finally, a ‘heavily loaded’ case was solved. For comparison a selection of model parame- 

ters of a = 4.077 and A = 0.03624 led to a solution which was indistinguishable from that of 
Rohde and Oh. See Figure 4. 

Next consider a roller bearing with a 5.1 inch diameter inner race and rollers of diameter 
0.875 in. If these are steel, we assume a Poisson’s ratio of 0.3 and a Young’s modulus of 
2.97 x 1071b/in2. Suppose the roller length is 0.85 in. A lubricant with a viscosity of 
0.174 x (Ib s)/in2 at atmospheric pressure and a pressure viscosity coefficient of 0.70 x 

in2/lb is to be used in the bearing. Three different loading conditions (100 Ib, 175 Ib and 
250 lb) and three different speeds (500 rpm, 2500 rpm and 5000 rpm) will be considered. 
These cases are meant to represent a typical engineering ‘check-out’ of a hypothetical roller 

ALPHA -0.3468D+01 LAMBDA-O.l065D+Ol 

Figure 3 
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X 

Figure 4 

bearing with the model. Table I summarizes the model parameters corresponding to these 
running conditions. 

Studying these solutions (Figures 5-13) one can gain some interesting insights into the 
qualitative behaviour of the solutions as a function of speed and load. Note that for most 
cases there is no appearance of a ‘plateau’ region in h(x) ,  the lubricant film thickness. Thus 
Grubin’s’ simplifying assumption is not valid in such cases. Increasing speed while holding 
load constant produces an increase in film thickness, a drift upstream of the pressure 

Table I 

Load Speed 
Run No. (lbs) (rpm) cY(A1pha) h(Lambda) 

1 100 500 
2 100 2500 
3 100 5000 
4 175 500 
5 175 2500 
6 175 5000 
7 250 500 
8 250 2500 
9 250 5000 

2.832 
2.832 
2-832 
3.746 
3.746 
3.746 
4.477 
4.477 
4.477 

6-057 
30-29 
60.57 
1.978 
9.889 

0.9692 
4.846 
9-692 

19.78 
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distribution and a lessening of spikiness in p(x). The free boundary xb moves downstream 
with increasing speed. Increasing load leads to decreased film thickness, pronounced spiki- 
ness of the pressure distribution and an increased resemblance at low speed of p(x) to the 
dry Hertzian solution. Load increases move the free boundary xb upstream. 

A quantity of great interest to the engineer performing an elasto-hydrodynamic analysis of 
a bearing is the minimum film thickness. Dowson and Higginson’ claim that the minimum 
film thickness can be fairly accurately represented over the whole range of theoretical 
solutions by a simple algebraic formula. An earlier film thickness formula derived by Grubin 
is widely known and used. Since these handbook formulae are the main analytic tools 
available short of computer models, a comparison of our model with the formulae is made 
here for the hypothetical bearing described above. 

As seen from Table 11, the model agrees with the formulae under a set of predictable 
circumstances, namely low speed and moderate to high loads. These circumstances agree 
with the hypothesis of Grubin which was that the lubricated film thickness h would merely 
be a translation of the geometry of the Hertzian (dry) case. We see from the graphs (Figures 
5-13) Grubin’s hypothesis is not valid in most cases. No ‘plateau’ region is apparent for most 
cases, so Grubin’s analysis, not suprisingly, is not valid. This, however, does not explain the 
disagreement with the formula of Dowson and Higginson. Their formula was derived by 
curve fitting using their numerical solutions. Judging from their results, two explanations are 
possible. Perhaps not enough computer solutions were used for the curve fitting. The graph 
in which they display their comparison of computer model vs. formula minimum film 
thicknesses contains only 12 points. (see Reference 1, p. 97). Since six physical parameters 
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Table 11. Minimum film thickness 

6(scaling Model Grubin D & H  
Run No. h$Se, factor) (CL in) (IL in) (P in) 

1 1.7584192 0*45896127(-5) 8.1 9.2 8.7 
2 4.2755541 19.6 29-7 26.9 
3 6.0481208 27.8 49.2 43.7 
4 0.9884915 0-8031824(-5) 7.9 8.8 8.1 
5 2.6114315 20.9 28.2 25.0 
6 3.8071227 30.6 46.8 40.6 
7 0.6754051 0.11474034(-4) 7.75 8.5 7-7 
8 1.8615249 21.4 27.3 23.9 
9 2-7817967 31.9 45.3 38.8 

enter the formula, they may have run computer models in only a small section of the regime 
of interest. Another possibility for the lack of agreement is that their computer solutions may 
not have converged. This is more speculative since no details are given about the actual 
solutions used in their curve fitting. However, this cause is not completely out of the question 
owing to the ad hoc nature of their numerical solution procedure. 

Our results show that the formulae of Grubin and Dowson-Higginson provide satisfactory 
answers over only a limited range of parameters. Significant deviations from accurate 
numerical calculations occur even at moderate speeds. For high speeds, formulae calculated 
minimum film thickness is 42 per cent to 76 per cent too large. Fortunately, the complemen- 
tarity method provides a computationally feasible alternative. 

CONCLUDING REMARKS 

Reformulation of the mathematical model for elasto-hydrodynamic lubrication of cylinders 
in line contact as a non-linear complementarity problem has produced a number of 
interesting insights. First, the complementarity approach has a meaningful interpretation in 
terms of physical and geometric quantities. Next, solutions are reliably and automatically 
computable now with the direct algorithm presented here. Finally, when the method is 
appropriately computerized, lubrication engineers can conveniently obtain accurate solutions 
over a wide range of parameters. 
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APPENDIX: NOMENCLATURE 

Symbol Definition Formula Units 

a Hertzian half-width length 
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Symbol Definition Formula Units 

Young’s moduli of 
two cylinders 

effective Young’s Modulus 

film thickness 

dimensionless film thickness 

load on cylinders 

pressure in lubricant 

dimensionless pressure 

Hertzian maximum pressure 

radii of two cylinders 

effective radius 

generic subset of Euclidean 

integration variable 
distance along surface 

of cylinder 
dimensionless independent 

variable 
dimensionless lubricant 

inlet point 
dimensionless lubricant 

outlet point (cavitation 
point, free boundary) 

downstream of outlet point 

cylinders 

space 

dimensionless point 

surface speed of two 

entrainment velocity 

pressure viscosity 
coefficient 

dimensionless pressure 
viscosity coefficient 

Hertzian reference 
deformation 

force 
(length)’ 

force 
(1++ 1-u2  1 - u 2  

El E2 

force 
(length)2 
jj- 

Ul+U2 

2 

&P,, 

2P 
E 
- 

(length)2 

length 

- 

force 
length 

- 

force 
(length)’ 
length 

length 

- 

- 
length 

- 

- 

- 

- 

length 
time 

length 
time 

(length)2 
force 

- 

length 
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Symbol Definition Formula Units 

h dimensionless model 

El0 reference viscosity 

P pressure dependent 

parameter 

of lubricant 

viscosity 

two cylinders 
l J l 9  lJ’ Poisson’s ratios of 

6.rrunuRE 
P2 

(force)(time) 
(length)2 

(force) (time) 
(length)‘ 

poeE0 
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